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SUMMARY

PS212 is a self-lubricating, composite coating that is applied by the

plasma spray process. It is a functional lubricating coating from 25 °C (or

lower) to 900 °C. The coating is prepared from a blend of three different

powders with very dissimilar Droperties. Therefore, the final chemical compo-

sition and lubricating effectiveness of the coatings are very sensitive to the

process variables used in their preparation. This document defines the rele-

vant variables and describes process and analytical procedures that have

resulted in satisfactory tribological coatings.

INTRODUCTION

The purpose of this paper is to present recommended procedures for the

preparation of PS212 which is a multicomponent, plasma sprayed, solid lubri-

cant coating. The quality of plasma sprayed coatings is very sensitive to

details of spray powder preparation and to process variables such as target

distance, gas flow rates, and electrical settings. This is especially so when

spraying multicomponent powders. Quality control is further complicated for
solid lubricant coatings because friction and wear characteristics are influ-

enced by post-spraying finishing procedures. This paper describes procedures

from powder preparation to final grinding that have been the most successful in
the development of PS212 tribological coatings at NASA Lewis Research Center.

PS212 is a member of the PS200 series of composite coatings. These coat-

ing compositions were designed to provide low friction and wear over a large

temperature spectrum. The prefix "PS" denotes that the coatings are applied

by a "plasma spray" process. The three digit number identifies a specific
coating formulation. Coatings in the "200" series contain by definition, a

high percentage of nickel alloy-bonded chromium carbide for wear control,

along with variable amounts of silver and a barium fluoride/calcium fluoride

eutectic composition for lubrication. The last two digits are arbitrary and

merely complete the identification of individual coating compositions.

In a study designed to optimize the proportions of the three primary con-

stituents of the coatings, formulation number PS212 was the most effective
lubricant in pin-on-disK friction and wear experiments (ref. I). The nominal

composition of this coating in weight percent is:

70 metal-bonded chromium carbide (Cr3C 2)
15 silver (Ag)

15 barium fluoride/calcium fluoride (BaF2/CaF 2)
eutectic



Although this composition gave the lowest friction and wear in the opti-
mization studies, different ratios of the three componentsmaybe better in
certain types of application. For example, a higher carbide content maybe
preferred in high contact stress applications where higher compressive strength
is important. The procedures described in this paper are specifically for
PS212, but they also apply in general to other coatings in the PS200series.
However, details, especially of the plasma spray process, maydiffer for each
memberof the series.

A comprehensive listing of publications concerning the development and
evaluation of the PS200 series of coatings at NASA Lewis is given in refer-

ences l to 9. Reference l, in particular compares various compositions in the

PS200 series.

RECOMMENDED PROCEDURES

The scope of this section encompasses a description of procedures for:

(1) the preparation of blended powders for plasma spraying; (2) the optimiza-
tion of p]asma spray parameters; (3) surface finishing by diamond grinding;

(4) suggested quantitative chemical analytical procedures; (5) friction and
wear characterization; and (6) optional heat treatment. Figure I is a flow

diagram showing the sequence of these procedures. The feedback loops in this

diagram illustrate the iterative steps that are used in developing a process
that will result in coatings of correct chemical composition and acceptable

morphology.

Powder Preparation

The chemical compositions and the particle size ranges of each of the
three major components of PS212 are given in table I. The chromium carbide
and silver powders are commercially available as plasma sprayable powders.
The fluoride eutectic powder is prepared by mixing reagent grade (99.9 percent
pure) powders of BaF 2 and CaF2 in the eutectic ratio given in table I, then
furnace melting them in a nickel crucible at 1100 °C in a nonoxidizing nitro-
gen atmosphere. The molten fluorides are held at temperature for about I hr,
then moved to a cooling zone of the furnace to solidify. When cool, the solid-
ified eutectic is removed from the crucible and crushed in a mechanical plate
crusher into particles of about I to 2 mm in size. This coarse material is
then ball milled with aluminum oxide pebbles into a fine powder. The powder is
then sieved to obtain a particle size range of 44 to 74 pm. X-ray diffraction
(XRD) analyses of these powders should be positive for the two fluorides only.
Contamination levels high enough to be detected by XRD, are not acceptable.

The eutectic powder is then thoroughly blended with the carbide and sil-
ver powders. The powders are mixed by a vigorous shaking motion; rolling is
not recommended because it can result in an undesirable agglomeration of the

powder.

The moisture content of the powders influences their mixing and flow char-

acteristics. The powders flow best when they are very dry. Therefore, only

dry powders should be mixed and plasma sprayed. Blended powders should be
stored in a desiccator or moisture-proof containers, and it is recommended that



they be further thoroughly dried by baking at about 125 °C just prior to plasma
spraying. The superior flow characteristics of dried powders improves the
deposit efficiency and the composition reproducibility of the coatings.

In summary,experience has shownthat the plasma spray characteristics of
the PS212powder is strongly influenced by the powder preparation procedure.
It is especially important to: (1) use prefused and repowdered eutectic rather
than merely blended BaF2/CaF2 powders: (2) employ the particle size ranges
given in table I; (The use of powders with different particle sizes may have a
significant effect on coating characteristics): and (3) use thoroughly dry
powders.

Optimization of the Plasma Spray Parameters

The next step after powder preparation is plasma spraying. The plasma
spray process is shown schematically in figure 2. In principle, the process
is simple: an inert gas is electrically ionized and accelerated to produce a
high-speed extremely high-temperature plasma; the powders to be sprayed are
injected into the plasma where they partially OF completely melt, then impinge
on the substrate where they solidify and form an adherent coating. In prac-
tice however, the process is complicated because it involves many significant
variable parameters. These include, for example: ionization voltages and cur-
rents, ionization and carrier gas flow rates and pressures, plasma spray gun
design, gun to substrate distance, substrate temperature, and powder flow
characteristics.

Stainless steel and nickel alloys are the preferred substrates for PS212.

The surface to be coated is first sand blasted and then plasma sprayed with a

nichrome bond coat about 0.08 mm thick. The PS212 lubricant coating is then

applied.

Typical plasma spray parameters which have produced satisfactory coatings

of PS212 are given in table II. It should be stressed, however, that param-

eters must be established for each plasma spray facility and coating, espe-

cially when multicomponent powders are being sprayed. Therefore, a systematic

method was developed to optimize the process. The steps in this method are
included in figure I, and essentially consist of an iteration of spraying and

analyses. A set of test coupons is sprayed using a range of spraying param-

eters around those listed in table If. This is followed by microscopic exami-

nation and chemical analyses of the coatings. The results are used as a guide

to any further parameter adjustments that may be necessary. The process is

repeated until the chemical composition of the coatings is within the limits

given in table Ill. The microporosity, which is characteristic of plasma spray

coatings, is acceptable: but gross voids detectable by low power, e.g. x20,

microscopy, are not acceptable. A SEM micrograph of a coating cross section
illustrating the distribution of coating components is given in figure 3(a).

A comparison of unacceptable and acceptable levels of porosity is given in

figure 3(b).

After parameter settings are found which produce satisfactory test cou-
pons, they are used to spray friction and wear test specimens (tribotest
specimens).



Surface Finishing
(Grinding Procedure)

The coatings are sprayed to a thickness of about 0.35 mmand then diamond
ground to the desired thickness (usually 0.25 mmincluding the thickness of the
bond coat) and a surface finlsh that is suitable for a sliding contact bearing
or seal application. The following grinding procedure has consistently pro-
duced satisfactory results.

(]) Use diamond grinding or cubic boron nitride grinding only.

(2) Use water as the only grinding fluid (no oil).

(3) Initial grinding depth should be 0.025 mm(0.001 in.).

(4) Final cuts should be 0.010 to 0.015 mm(0.0004 to 0.0006 in.).

(5) Dress the wheel often with a diamond dressing tool or diamondmatrix
stick.

(6) Use low feed rates to minimize grinding marks.

(7) Direct the water spray into the grinding contact area to continuously
wash particles away.

(8) The final surface should be smooth, but have a speckled appearance
(due to the composite nature of the coating).

The ground surfaces should be examined macroscopically to insure that the
grinding did not smearor crack the coating surface. Thesedefects are indica-
tions that either the wheel was not dressed in a manner that makesa clean cut
or the depths of cut were incorrect. Figure 3(c) is a low magnification photo-
micrograph of a diamond ground surface of PS212that is considered acceptable.
No cracks or large voids are present, and the soft silver and fluorides have
not been selectively removedby the finishing operation. It is difficult to
specify an acceptable surface finish for the coatings becauseof the micropores
at the surface. The coatings are ground in a manner that produces surfaces
that are smooth in terms of asperity size, but nevertheless have a high root
mean square surface finish because stylus profilometry averages micropores as
well as asperities. The ground surfaces typically have a 0.7 to 1.0 pmfinish,
but this is reduced to 0.1 to 0.2 after a brief duration of sliding which
closes the surface pores. Incorrect finishing procedures can alter the chemi-
cal composition of the ground surface. For example, if the bulk composition
of the coating is correct, but the surface is deficient in silver or fluorides,
it indicates that the finishing procedure has selectively removedthe softer
componentsof the coating. This should not occur if the coatings are ground
properly.

Quantitative Chemical Analyses

Table III gives the ranges of elemental composition that have given
acceptable performance in PS212. Our experience has shownthat the silver con-
tent and the fluoride eutectic content (computed from the barium and calcium



content) mayvary as muchas plus or minus 20 percent of the nominal, (in oth-
er words 15±3 percent) without adversely affecting coating performance. Net
chemical analyses are useful for determining the average bulk composition of
the coatings, and are used to establish standards or to check the accuracy of
instrumental analytical techniques. However, the near surface region, some-
times called the surficial region, contains the material volume that is of most
tribological importance, and this region does not necessarily have the same
composition as the bulk. An exampleof this is the depletion of somecoating
componentsby an incorrect finishing operation.

An energy dispersive (EDS) x-ray technique, which is used in conjunction
with manySEMinstallations, can be a useful analytical tool for plasma sprayed
coatings. The primary excitation source is a 15 keV electron beamwhich excites
characteristic x-ray emission of the elements. The depth of analyses is on the
order of I wm. This relatively shallow sampling depth is an advantage in diff-
erentiating surficial composition from bulk composition. The disadvantage is
that thin contaminant films such as an oxide tarnish on the surface can give
misleading results. Therefore, surfaces must be free of visible surface films
during the analyses. Elemental quantitative analysis programs are available
for use with EDS. Weuse a Princeton GammaTech EDSunit with a program called
NOSTDwhich does not require calibration standards, but computes ZAFcorrec-
tions for each element to correct for atomic number(Z), x-ray absorption (A),
and fluorescence (F).

Another technique for analyzing these coatings is x-ray fluorescence
(XRF). XRFprovides about one order of magnitude greater depth of analysis
than EDS. This reduces the possibility of misleading results caused by thin
contaminant films while still detecting deficiencies of any of the major compo-
nents in the surficial region. Clearly, an important problem of chemical
analyses is to choose an optimum depth of analyses. The subject of depth of
analysis by various analytical techniques is thoroughly discussed in refer-
ence I0. XRFis an attractive technique for analyzing plasma spray coatings
for a numberof reasons in addition to depth of analysis considerations. For
example, ×RFcan be done in room air thus eliminating the complexity of a
vacuumsystem. Further, portable XRFsystems that can accurately analyze
plasma sprayed coatings immediately following their application, are available
at a relatively modest cost. These portable instruments use isotope radiation
to stimulate characteristic x-rays of the elements in the sample. Peak heights
of the spectra for the sample are then comparedto those of standards of known
composition. Portable XRFinstruments are generally simple to use, reliable,
and can provide coating analyses in a few minutes once suitable standards have
been programmedinto the instrument. Becauseof the rapid analysis capability
and portability, these instruments are very useful in optimizing plasma spray
parameters as well as for verifying coating composition from batch to batch.

Imageanalyses microscopy has been used to estimate area percentages of
distinguishable componentsin other composite coatings (ref. II). It may be
possible to analyze PS212by th_s method. Metallographically polished speci-
mensare required. If the assumption is madethat area percentages represent
actual componentratios, they can be considered to be equal to the volume per-
centages. Table IV gives the volume percentages of the components in PS212
calculated from their weight percentages and densities.



Friction and Wear Characterization

The self-lubricating quality of the coatings is evaluated by doing fric-
tion and wear tests using a bench test machine such as a rub block on a disk or
a pin-on-disk device. Test specimen configurations for these devices are shown
in figure 4, and a sketch of a pin-on-disk tribometer is shown in figure 5. A
cobalt base alloy, Stellite 6B with a hardness of Rockwell C-40, is a preferred
counterface material for the PS200 series of coatings.

Table V from reference 5 gives the friction coefficients and wear factors

that have been measured in pin-on-disk tests of Stellite 6B sliding on PS212 in

atmospheres of helium, or air at temperatures of 25, 350, and 760 °C. Corre-

sponding data for PS212 in hydrogen were not measured but the friction and wear
of PS200 which has a similar composition (80 metal-bonded Cr3C2-1OA5-10 fluo-

ride eutectic) are included in table V for reference. The wear factors are

given in units of cubic millimeters wear volume per Newton load per meter slid-

ing distance (mm3/Nm). The cylindrical pins are 9.5 mm in diameter with a

4.75 mm spherical tip that slides against the Flat, coated surface 'of a rota-

ting disk to form a circular wear track of 16 cm circumferance on the coating.
The normal load is 0.5 kg, and the sliding velocity is 2.7 m/s. Coatings eval-

uated under similar conditions should have friction and wear values that do not

substantially exceed those given in table V. Higher friction coefficients
indicate that the chemical composition in the surficial region is probably

wrong due to either incorrect plasma spray procedures, or incorrect grinding.

Optional Heat Treatment

PS212 can be heat treated to cause fluorides to migrate from the interior

of the coating to the surface. A heat treatment consisting of 2 hr at 900 °C

in a hydrogen atmosphere, increases the fluoride content of the surface layer

and improves the friction and wear properties. (See figs. A-l and A-2 in

appendix I.) Table Vl gives the friction and wear data in air for heat treated

PS212. A comparison with the data in table V for PS212 that was not heat
treated shows that both friction and wear %n air are reduced by this treatment.

The heat treatment procedure was not optimized. Shorter firing times for

example may be necessary to avoid excessive fluoride buildup on surfaces where

small clearances are required.

CONCLUDING REMARKS

I. The procedures outlined in this paper, when accurately followed, will

reproducibly produced PS212 coatings with good tribological properties over a

large temperature range.

2. The quality of PS212 plasma spray coatings is sensitive to the details

of preparation, especially in regard to the plasma spray parameters and the

finishing procedure.

3. A cobalt-base alloy, Stellite 6B, is the best counterface alloy found

to date for sliding against PS212.



4. It is the intent of this document to assist in the transfer of technol-

ogy developed at NASA to U.S. industries.
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TABLE I. - NOMINAL COMPOSITIONS AND PARTICLE SIZES OF THREE

MAJOR COMPONENTS USED IN PREPARING PS212

Component

Metal-bonded
chromium carbide:

Cr3C 2
Ni
Co
Al

Silver (Ag)
Eutectic:

BaF 2
CaF 2

Composition,
wt %

58
28
12
2

I00

68
32

Particle size

U.S.

sieve number

-200 + 400

-lO0 + 325
-200 + 325

Micrometer

range

74 to 37

149 to 44
74 to 44

TABLE If. - TYPICAL PLASMA SPRAY PARAMETERS

[Must be optimized for each facility. Equipment:
Plasmadyne SGIO0 gun; anode/cathode pair
no. 155; single powder injection port; gas
injector no. 110; auxiliary gas, helium.]

Arc gas ...... _............ Argon
Arc gas flow rate, m°/hr .......... 1.4
Powder carrier gas • •
Powder carrier gas flow" rate, "m_/hr" i i . . .Argon0.4

Coating powder flow rate, kg/hr ........ I
Amperage, A ............. 400 to 475
Voltage, V ................. 32
Gun to specimen distance, mm ....... ~150

9



TABLE III. - COATING COMPOSITION GUIDE

(a) Allowable composition scatter in
PS212 coating components

Component

Metal-bonded

AgCr3C2

BaF2/CaF 2 eutectic

(62/38 weight ratio)

Scatter,
wt %

70=6

15±3
1523

(b) Elemental compositions of coatings

Element a

Cr

C
Ni

Co
A1

Ag
Ba
Ca
F

Nominal

composition of
metal-bonded

Cr3C 2 ,

wt %

48
6

28
12

2
0

[

Composition
range for

PS212,
wt %

33.6=3.0
4.2 (nominal)

I9.6±2.0
8.4±0.8
1.4±0.2

15.023.0
7.3±I.5
2.9±0.6
4.8±1.0

Elements

analyzed
by EOS
or XRF

X
(b)
X
X
X
X
x
X
(c)

aBalance: Mo, B, and Si.
bNot analyzed. Computed as 70 percent

metal-bonded chromium carbide.

CNot analyzed. Computed from analyses

of carbon in

for Ba and Ca.

TABLE IV. - NOMINAL VOLUMETRIC COMPOSITION

OF PS212

[Theoretical average density:

= 6.60 gms/cm3.]

Component

Cr3C 2

Ni alloy binder
Ag

BaF 2
CaF 2

Density,

gm/cm 3

5.68

10.50
4.80
3.18

Content

in PS212.
vol 7_

37.2

Balance
9.4
II .8
12,7

]0



TABLE V. - FRICTION AND WEAR OF PS212 IN AIR AND IN HELIUM

AND OF PS200 IN HYDROGEN

[Test conditions; Stellite 6B pins of 4.76 hemispherical radius sliding
on coated disks; load, 4.9 N; sliding velocity, 2.7 m/s.]

Coating

PS212

PS212

PS200

Test

atmosphere

Air

Helium

Hydrogen

Temper-
ature,

oC

760
350

25
760
35O

25
760
350

25

Friction
coefficient,

_m

0.40_0.02
0.36:0.01
0.28±0.01
0.26±0.02
0.25±0.03
0.24±0.02
0.18±0.05
0.26±0.06
0.26_0.04

Pin wear
factor, a

K,

mm3/N m

3.2x10 -6

.9

.7
6.2x10 -7

2.8
5.2
.75

1.25
2.0

Coating wear
factor,

K,

mm3/N n

2.5xi0 -5

1.6
5.6
1.8
.4
.2

7.6xi0 -6

4.5
7.0

3

a K = W_r volume = mm
Load x Sliding distance N m

K < 10-6 indicates low wear:

IO-6 < K < lO-5 indicates moderate wear;

K > 10-5 indicates severe wear.

TABLE Vl. - FRICTION AND WEAR OF HEAT-TREATED PS212

SLIDING ON STELLITE 6B IN AIR

[Heat treatment: 900 °C for 2 hr in hydrogen. Test condi-
tions: 4.76-mm spherical-radius Stellite 6B pin on PS212
flat; load, 4.9 N; sliding velocity, 2.7 m/s.]

Temper-
ature,

°C

760
350
25

Friction

coefficient,
_m

0.29t0.02
0.28±0.01
0.16±0.01

Pin wear
factor, a

mm3/N mxlO 6

(2.2±0.3)xi0 -6

(0.5±0.1)
(2.0_0.6)

Coating wear
factor, a

mm3/N mxlO 6

1.3xi0 -6

.5
3.2

apin wear was measured every 20 min duri
test. Disk wear was measured once after each 60-min
wear test.

n_ a 60-min wear

II
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FIGURE 3A, - SEN CROSSSECTION OF PS212 SHO_/INGDISTRIBUTION OF COMPONENTSINFERREDFROM

ELENENTALANALYSESBY EDS. ORIGINAL MAGNIFICATION OF 600X.
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FIGURE 3C. - SEM OF DIA/_)NDGROUND PS212 ORIGINAL MAGNIFICATION OF 50X.
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APPENDIX I

ANALYSIS OF PS212 SURFACES BY EDS TO SHOW EFFECT OF HEAT TREATMENT

ON SURFACE COMPOSITION

Figure A-l(a) is an EDS incremental area scan along one radius of a 6.4-cm
diameter dlsk coated with PS212 and finished by diamond grinding. Each of II

equally spaced area increments along a disk radius was analyzed to obtain the
radial composition distribution of the coating. The composition is seen to be

quite uniform over the entire radlus. However, the calcium and barium concen-

tration are very low. It is believed that the soft calcium and barium fluo-

rides were removed by incorrect grinding.

An experiment was then performed in which the disk was induction heated

for 2 hr in hydrogen to produce a temperature gradient from 905 °C at the rim

to 800 °C at the edge of the center hole of the disk. Figure A-1(b) shows min-

imal concentration changes relative to the untreated dlsk on the surface near
the center of the disk which was heated to 800 °C, but very large changes

relative to the untreated disk as the 900 °C region is approached. In the

region heated to about 900 °C, a very large increase in barium and calcium

is observed. Silver concentration is correspondingly diluted by this large

increase of barium and calcium. This technique not only identified composition

change, but in one heat treatment, identified the temperature level necessary

to achieve it. The heat treated dlsks gave superior tribological performance
that we attribute to calcium and barium fluoride enrichment of the surface.
The reduced friction and wear of heat treated PS212 was discussed in the main

body of the text. Compare tables V and VI.

If the coating is deficient in calcium and barium fluoride throughout its

thickness (and not only at the surface due to incorrect grinding), the heat
treatment of course pr6duces no beneficial effect. This is illustrated in fig-

ures A-2(a) and (b). EDS analyses along the radius of a coating that was defi-

cient in calcium fluoride and barium fluoride because of incorrect plasma spray

parameters shows that only very small increases in barium and calcium are

achieved by the heat treatment. These coatings were poor tribological in both

the as-ground and the heat treated condition.

16
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